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ABSTRACT

In this paper, the task of robust estimation in the presence

of outliers is presented. Outliers are explicitly modeled by

employing sparsity arguments. A novel efficient algorithm,

based on the greedy Orthogonal Matching Pursuit (OMP)

scheme, is derived. Theoretical results concerning the recov-

ery of the solution as well as simulation experiments, which

verify the comparative advantages of the new technique, are

discussed.

Index Terms— Greedy Algorithm for Robust Denoising

(GARD), Robust based Regression, Robust Least Squares,

Greedy algorithms, Outlier detection

1. INTRODUCTION

Sparsity-aware learning and related optimization techniques

have been at the forefront of the research happening in sig-

nal processing, encompassing a wide range of topics, such

as compressed sensing, denoising and signal approximation

techniques [1–3].

The idea of sparsity (also related to sufficiency or econ-

omy of a representation), recently, seems to fit in more ap-

plications than initially expected, despite the fact that sim-

ilar techniques (such as the minimization of cost functions

involving ℓ1 norms) have been used since the 1970s. There

are two basic paths for obtaining a solution to the respective

problem. The first one, comprises the family of greedy algo-

rithms which provide the solution of tasks that minimize the

ℓ0 (pseudo) norm, under certain assumptions. Even though,

in general, this is an NP-hard problem, methods belonging to

greedy class of schemes can efficiently recover the solution in

polynomial time. The second path is to employ the ℓ1 norm

minimization, the closest convex relaxation of the ℓ0 norm.
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A recent application of sparsity-aware optimization meth-

ods is that of signal denoising, where one is interested to

recover the original signal, which (in this case) has been

corrupted not only by standard (inlier) noise (e.g., Gaussian

noise, etc.), but also by outliers. The main idea, which is

followed in this work, is to model the noise via two separate

components; one corresponding to the inlier and one to the

outlier. Since the outlier part is not present to all samples,

sparse modeling arguments are mobilized to model the out-

lier component. This concept has been previously employed

in [4, 5]. The novelty of our approach lies in the different

modeling compared to the previous works, by treating the

task in terms of the ℓ0 minimization via greedy algorithmic

concepts. A novel scheme has been derived which exhibits

notable performance gains, compared to previously published

works, both computationally as well as in the quality of the

recovered results.

Notations: We use capital bold to denote a matrix, X,

bold lower case for a vector, θ, while ui denotes the i−th

element of vector u and xi the i−th column of matrix X.

Finally, the unitary matrix of dimension n, will be denoted In

and the vector of zero elements as 0.

2. PROBLEM MODELLING

In a linear regression task, we are interested in estimating the

relation between two sets of variables, (yi,xi), i = 1, ..., n,

where yi ∈ R are the output values produced by the indepen-

dent variable (input) xi ∈ R
m, through the model:

yi = xT
i θ + ei, i = 1, ..., n, (1)

where ei is the observation noise.

Our goal is to estimate θ ∈ R
m from the given training

dataset of n measurements. Collecting over n, we can rewrite

(1):

y = Xθ + e, (2)

where y = (y1, y2, ..., yn)
T , e = (e1, e2, ..., en)

T and matrix

X = [x1,x2, ...,xn]
T ∈ R

n×m.



As it is common in regression analysis, we consider that

the number of observations exceeds the number of unknowns,

i.e., n > m. In order to seek for a solution, we should assume

that X is a full rank matrix, i.e. rank(X) = m. If the noise

is i.i.d Gaussian, the most common estimator, which is sta-

tistically optimal is the Least Squares (LS) estimator. How-

ever, this estimator fails in the presence of outliers or when

the noise distribution has long tails.

The key aspect exploited in this work, that provides an

efficient approach to overcome the aforementioned problem,

is sparsity. In this context, we assume that the outlier noise

values are significantly fewer (i.e., sparse) than the size of the

input data. To this end, we express the noise vector as a sum of

two independent components, e = u+η, where η is assumed

to be a dense vector of bounded inlier noise of energy ǫ0 and

u ∈ R
n the sparse outlier noise vector over the support set,

T , with cardinality |T | ≤ s. The support set is defined as the

index set for which u is nonzero. Hence, equation (2) can be

recast as:

y = Xθ + u+ η. (3)

There are two basic paths towards an estimation of the so-

lution of the problem (3). The first one, which reflects on

the combinatorial nature of the problem is to employ the ℓ0
(pseudo)-norm on vector u. Although this task is impractical,

greedy selection algorithms seem to work under specific as-

sumptions and leads to good estimates of the solution, as we

will later demonstrate. In this case, the associated optimiza-

tion problem becomes:

min
θ,u

||u||0, s.t. ||y −Xθ − u||2 ≤ ǫ0. (4)

The second classic approach, is to relax the ℓ0 with the convex

ℓ1 norm, using a similar formulation:

min
θ,u

||u||1, s.t. ||y −Xθ − u||2 ≤ ǫ0. (5)

Problem (5) is also known as Robust Regression Basis Pursuit

(BPRR) and it can be solved using Second Order Cone Pro-

gramming (SOCP) techniques [6, 7]. An equivalent approach

is to define the Lagrangian form of the problem for appropri-

ate multiplier values λ > 0:

min
θ,u

1

2
||y −Xθ − u||22 + λ||u||1, (6)

and solving using a popular method by the name of Alternat-

ing Direction Method of Multipliers-(ADMM)1.

3. GREEDY ALGORITHM FOR ROBUST

DENOISING - (GARD)

3.1. Algorithm

Our algorithm attempts to solve problem (4) and it will be de-

veloped along the classic Orthogonal Matching Pursuit ver-

1The two forms
(

(5) and (6)
)

are equivalent for positive values of λ de-

pending on values of the inlier error bound ǫ0.

sion [8–10]. Because of space limitations, the classic (OMP)

will not be discussed in details here.

We reformulate (4) into the equivalent form:

min
θ,u

||u||0, s.t.

∥

∥

∥
y −A

(

θ

u

)

∥

∥

∥

2
≤ ǫ0, (7)

where A = [X In]. The basic idea is the restriction of the

selection over atoms of the second half of matrix A, i.e., ma-

trix In = [e1 e2 ... en]. The notably improved performance

of the proposed scheme is due to the orthogonality between

the columns of In (standard Euclidean basis). Following the

basic steps of the (OMP), the following algorithm is derived:

Input: X, y, ǫ0
Output: ẑ = (θ̂, û)T

Initialization: k := 0, Sac = {1, 2, ...,m},

Sinac = {m+ 1, ...,m+ n}, A
(0)
ac = X

Solve: ẑ(0) := argminz ||y −A
(0)
ac z||22

Initial Residual: r(0) = y −A
(0)
ac ẑ

(0)

while ||r(k)||2 > ǫ0 do
k := k + 1
Find: jk := argmaxj∈Sinac

|r
(k−1)
j−m |

Update Support:

Sac := Sac ∪ {jk}, A
(k)
ac = [A

(k−1)
ac ejk ]

Update Current solution:

ẑ(k) := argminz ||y −A
(k)
ac z||22

Update Residual: r(k) = y −A
(k)
ac ẑ

(k)

end

Algorithm 1: (GARD) - Greedy Algorithm for Robust De-

noising

Remarks:

• The algorithm starts with a Least Squares solution to ob-

tain ẑ(0). Thus if no outliers exist, (GARD) solves a Least

Squares problem.

• The residual is orthogonal to each column that participates

in the representation, i.e., 〈r(k), ejk〉 = r
(k)
jk

= 0, ∀ k =
1, 2, . . . . Thus, column ejk of matrix In, is not selected

once again.

• Although the complexity of the algorithm is O(m+k)3 at

each step k, (k << n), it could be further reduced using

Cholesky decomposition. At the initial step (k := 0), let

L
(0) denote the lower triangular matrix of the Cholesky

decomposition of XT
X. The total cost after solving the

normal equations using forward and backward substitu-

tion is O(m3/3 + nm2). At each following step, we

compute v, such that L(k−1)v = A
(k−1)T

ac ejk and b =
√

1− ||v||22, so that

L
(k) =

(

L
(k−1)

0

vT b

)

.



The interested reader is referred to [11]. Hence, by up-

dating the Cholesky matrix L at each step, we reduce the

computational cost down to O
(

(3/2)(m+ k)2 +3n(m+

k)
)

, k << n, since we only need to solve the normal

equations for the augmented matrix A
(k)
ac using forward

and backward substitution with matrix L
(k).

3.2. Properties

We derive the basic properties of (GARD). Due to space lim-

itations the proofs will not be presented here.

Lemma 1 At every k ≤ n − m step, (GARD) selects a col-

umn vector ejk from matrix In, that is linearly independent of

all the column vectors in matrix A
(k−1)
ac . Hence, A

(k)
ac is full

rank and the solution to the Least Squares problem at each

step is unique.

The proof relies on mathematical induction.

Theorem 1 The norm of the residual vector r(k) = y −

A
(k)
ac ẑ

(k) in algorithm 1 is strictly decreasing. Moreover, the

algorithm will always converge.

Theorem 2 Assume that y ∈ R
n admits a representation of

the form y = Xθ∗ + u∗ + η, where T = supp(u∗), |T | ≤
s << n and ||η||2 ≤ ǫ0. Then, (GARD) guarantees that

the support of the sparse vector is recovered, if there exists

δ ∈ (0,min(|ui|)/2), i ∈ T , with ||X(θ∗−θ̂(k))||∞ ≤ δ, ∀k,

such that

2(ǫ0 + δ) < min(|ui|), i ∈ T, (8)

where θ̂(k) is the Least Squares estimate of θ∗, at each step.

The proof borrows the main concepts behind Lemmas 5.2 and

5.3 in [12], to ensure that at every step the correct support is

established. It is obvious that (8), could be violated, hence

the stability result holds only locally. Another point of view

of Lemma 2 is the separation of the inlier and outlier noise.

Only the noise values outside the zone [−ǫ0 − δ, ǫ0 + δ] are

considered to be outliers, which could also be used as the def-

inition of outlier noise.

4. COMPARISON OF METHODS

Methods tested within this work and compared against

(GARD) are listed bellow:

• M-estimates: In M-est a robust cost function ρ (satisfy-

ing certain properties) of the residual error ri = yi −
xT
i θ, i = 1, 2, ..., n is minimized, scaled by a statistical

factor σ, so that θ̂ = argminθ
∑n

i=1 ρ(ri/σ) [13], [14].

Another way to interpret M-est is by solving a Weighted

Least Squares problem iteratively,

min
θ

||Wr

1/2(y −Xθ)||22, (9)

using (IRLS) algorithm, where the diagonal weight ma-

trix Wr assigns the weights, with values depending on the

Robust function (for classic Least Squares each weight

on the diagonal equals 1). In our experiments we used

Tukey’s biweight (or bisquare) robust (but nonconvex)

function, which is the routine robustfit in MATLAB. For

σ, we have used the default parameter settings for the

mean absolute deviation (MAD) to compute it [14, 15].

• (SOCP): Reformulate problem (5) as (SOCP) prob-

lem [16], [6]. The function we used in order solve the

(SOCP) problem is SeDuMi of the optimization pack-

age CVX for MATLAB of Stanford University, CVX

RESEARCH: http://cvxr.com/ (31/01/2014).

• (ADMM): Solve problem (6) using the Alternating Di-

rection method of multipliers described and used in many

papers [17, 18].

• (SBL): Solve problem using Sparse Bayesian Learning al-

gorithm described in [4, 5].

• (ROMP): Use OMP algorithm, but solve a robust Least

Squares step (M-est) at each iteration instead via

min
θ

||Wr

1/2(y −AΩtθ)||22, (10)

where Ωt is the set of active columns of matrix A. Once

again, we have used Tukey’s biweight function (robustfit)

with the default parameter settings as in M-est [19]. Com-

plexity of the method depends on various parameters and

is not given in closed form.

Algorithm Solves Complexity

(GARD) (4) O
(

m3/3 + k3/2+
(n+ 3k)m2 + 3kmn

)

(M-est) (9) O
(

m3/3 + nm2
)

/step

(SOCP) (5) O
(

(n+m)2.5n
)

(ADMM) (6) O
(

(n+m)3/3 + n(n+m)2
)

/step

(SBL) (6) O
(

m3/3 + nm2
)

/step

Table 1. For (GARD) and (SOCP) total complexity is given.

For the rest total complexity depends on the number of itera-

tions for convergence.

5. EXPERIMENTAL RESULTS

In the experiments below, we have tested how each algorithm

performs and we highlighted their pros and cons. The exper-

imental set up parallels [16]. In all our experiments, we have

used equation (3) to generate our data (yi,xi), i = 1, 2, ..., n,

xi ∈ R
m, with n = 600 measurements. The columns of ma-

trix X, are obtained by uniformly sampling an m-dimensional

hypercube centered around the origin and θ ∈ R
m are ran-

dom vectors chosen from the multivariate normal distribution
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Fig. 1. Mean Square Error and complexity for Robust Regres-

sion methods.

with mean value 0 and standard deviation 0.03. The inlier

noise is drawn from the normal distribution N (0, 0.12), while

the outlier noise signal is sparse impulsive. Outlier values,

equal ±5 for the first experiment and ±100 for the final two,

in s indices, uniformly sampled over n coordinates (s < n).

The input parameter for (GARD), (SOCP) and (ROMP)

is the inlier noise bound ǫ0 (which could be assumed to

be known or otherwise estimated using the cross validation

method). The parameters required for (ADMM) and (SBL),

are the regularization parameter λ and the pruning threshold

plus the initial vector of hyperparameters, respectively. For

all methods parameters have been selected, so that to opti-

mize performance. Concerning (SBL) a major drawback of

the latter method is that it is very sensitive to the initialization

(recall that this is a non-convex method, which cannot guar-

antee that the global minimum is attained for each dimension

m), while the time needed for each implementation cannot

be assured, since the number of iterations until convergence

strongly depends on those parameters. For (SBL) random

initialization was performed a number of times and the best

solution was selected. Finally, the (M-est) does not require

any parameters to be predefined.

a) In the first experiment, the dimension of the unknown vec-
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Fig. 2. Recovery rate for dimension of the unknown vector

m = 200.
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Fig. 3. Phase transition curves. Under each curve, the proba-

bility of recovery is greater than 50%.

tor θ is m = 200. The percentage of outliers varies from

5% to 55% and the Mean Square Error of the estimated

solution is computed over a set of 40 experiments for each

outlier density. In Figure 1, it is shown that for the case

of outlier fraction under 20%, (GARD) excels; the mean

implementation time is the lowest, while the support of

the unknown outlier vector is fully recovered. (M-est)

seems to perform well too, but its performance breaks

down for a fraction of outliers greater than 15%; more-

over, it operates at a higher computational cost, too. An-

other algorithm that is also worth to be noticed is (SBL);

it is clear, that the greedy approach provides better perfor-

mance when the outlier vector is very sparse (compared

to the ℓ1 minimization).

b) In our second experiment (Figure 2), we have tested the

most efficient algorithms overall (in terms of performance

and complexity). The dimension of the unknown vector,

is also m = 200. Input noise is considered as in experi-

ment a), with the outlier fraction varying over 0% to 45%.

Finally, the probability of recovery 2 is computed over 200

2Solution recovered if ||θ̂ − θ||2/||θ||2 ≤ 0.07.



experiments at each outlier fraction. Note that (GARD)

reaches the phase transition (from success to failure) for

the highest fraction of outliers.

c) In our last experiment (Figure 3), we have produced the

phase transition curves for (GARD), (M-est), (SOCP) and

(SBL). For each dimension, we have computed the frac-

tion of outliers of the sparse impulse noise vector that cor-

responds to probability of recovery at 50%
(

solution re-

covered as in experiment b)
)

. Once again, probability of

recovery is computed over 200 experiments at each outlier

fraction. Note that (GARD) reaches the phase transition

for the highest fraction of outliers, for the whole range of

dimensions of the unknown vector examined.

6. CONCLUSIONS AND FUTURE WORK

In this work, a new approach to the Linear Robust Regression

problem has been proposed. Although other previous meth-

ods have a balanced performance, all tests against standard

methods, reveal that due to the nature of the problem (sparse

outlier vector), (GARD) manages to perform distinctly better

than the other methods, while it is also computationally more

efficient. Other issues to be discussed in the near future, in-

clude an a priori estimation of the solution error, as well as

the development of an automatic termination criterion of the

algorithm, depending on the statistics of the noise.
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